Proceedings of the Jangjeon Mathematical Society www.jangjeon.or.kr
28 (2025), No. 4, pp. 643 - 656 http://dx.doi.org/10.17777/pjms2025.28.4.018

ON J,-NOETHERIAN RINGS
HWANKOO KIM, NAJIB MAHDOU, AND EL HOUSSAINE OUBOUHOU

ABSTRACT. In this paper, we introduce and study the class of J*-
Noetherian rings. A commutative ring R is defined to be J*-Noetherian
if its Jacobson radical J(R) is a Noetherian R-module, meaning every
ideal in J(R) is finitely generated. This generalizes the concept of Noe-
therian rings, and we explore several properties and characterizations of
J*-Noetherian rings. We present examples to demonstrate the distinc-
tion between Noetherian rings and J*-Noetherian rings, proving that not
all J*-Noetherian rings are Noetherian. Additionally, we extend classi-
cal results such as the Eakin-Nagata-Formanek theorem to the context
of J*-Noetherian rings. We also investigate the stability of the J*-
Noetherian property under various ring extensions, such as polynomial
and power series extensions, as well as trivial ring extensions. Further-
more, we provide homological characterizations of J*-Noetherian rings,
including a Cartan-Eilenberg-Bass type theorem, which states that a
ring is J*-Noetherian if and only if direct sums and direct limits of J*-
injective modules remain J*-injective. Our results provide new insights
into the structure of rings via the lens of their Jacobson radical.

1. INTRODUCTION

Throughout this paper, we focus solely on commutative rings with iden-
tity. R will always denote such a ring. The concept of Noetherian rings is
one of the most important topics and is widely used in many areas, includ-
ing commutative algebra and algebraic geometry. The Noetherian property
was first introduced by the mathematician Emmy Noether, who established
a connection between the ascending chain condition on ideals and the prop-
erty of being finitely generated. More precisely, she showed that for a ring R,
the ascending chain condition on ideals holds if and only if every ideal of R
is finitely generated. This equivalence plays a significant role in simplifying
the structure of ideals in a ring.

The importance of the Noetherian property was first demonstrated in
Hilbert’s Basis Theorem, which states that a ring R is Noetherian if and only
if the polynomial ring R[X] (and, correspondingly, the formal power series
ring R[[X]]) is also Noetherian. Noetherian rings also have many module-
theoretic characterizations, such as the well-known Cartan-Eilenberg-Bass
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Theorem, which states that a ring R is Noetherian if and only if every
direct sum of injective R-modules is injective, and equivalently, if every
direct limit of injective R-modules over a directed set is injective (see [16,
Theorem 4.3.4]).

Due to the significance of Noetherian rings, many mathematicians have
explored Noetherian properties in various classes of rings and have sought
to generalize the notion of Noetherian rings. One famous generalization is
the concept of coherent rings, i.e., rings in which every finitely generated
ideal is finitely presented.

For a further generalization, Ding et al. [9] introduced the notion of .J-
coherent rings in terms of the Jacobson radical ideal in 2009. A ring R is said
to be J-coherent provided that J(R) is a coherent R-module in the sense
of [6], i.e., any finitely generated ideal in J(R) is finitely presented (note
that the definition of a coherent module is restricted to finitely generated
modules in [15, Definition 4.51]). On the other hand, in [5], Dabbabi and
Benhissi introduced the notion of non-J-Noetherian rings, also in terms of
the Jacobson radical ideal. A ring R is called non-J-Noetherian if each non-
J-ideal (i.e., an ideal not contained in the Jacobson radical of R) is finitely
generated.

The main motivation of this paper is to introduce and study the J,-
Noetherian property of rings. Compared with the concepts of Noetherian
rings and J-coherent rings, we define a ring R to be J.-Noetherian if J(R)
is a Noetherian R-module, or equivalently, if every ideal in J(R) is finitely
generated. Trivially, Noetherian rings are J,-Noetherian. Several exam-
ples and counterexamples are provided in Example 2.2. We also establish
the Eakin-Nagata-Formanek Theorem for J,-Noetherian rings (see Theorem
2.3).

In Theorem 2.9, we prove that if R is a J.-Noetherian ring, then R[X]
is also a J,-Noetherian ring. However, Example 2.10 demonstrates that the
converse is not true in general. Subsequently, we explore the stability of this
concept in power series extensions with a finite number of indeterminates.
In Corollary 2.16, we show that the power series ring R[[X1,...,X},]] is
Jyx-Noetherian if and only if R is a Noetherian ring.

It is natural to inquire about the relationship between J-coherent rings
and J,-Noetherian rings. To address this, we study the transfer of the J,-
Noetherian property via trivial ring extensions. We show that the trivial
ring extension R x M is J,-Noetherian if and only if R is J,-Noetherian and
M is a Noetherian R-module (see Theorem 2.18).

Using these results, we provide three counterexamples. First, we find a
coherent (and thus J-coherent) ring that is not J,-Noetherian (see Example
2.22). Second, in Example 2.23, we construct a J-coherent ring that is
neither coherent nor J,-Noetherian. Finally, surprisingly, J.-Noetherian
rings can also fail to be J-coherent (see Example 2.24).
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The final section is dedicated to providing some homological character-
izations of J,-Noetherian and .J-coherent rings in terms of J,-injective, J-
injective, and J-flat modules. Notably, we show that direct limits of injective
modules need not be J-injective for J,-Noetherian rings (see Remark 3.4).

Let J(R), Nil(R), and Z(R) respectively denote the Jacobson radical of
R, the nilradical of R, and the set of all zero-divisors of R. For any terms and
notations not defined in this paper, readers are referred to [16] for further
clarification.

2. ON J,-NOETHERIAN RINGS
We start with the following definition.

Definition 2.1. A ring R is said to be a J,-Noetherian ring provided that
any ideal in J(R) is finitely generated.

Recall from [17] that a ring R is said to be a Nil(R).-Noetherian ring if
every nil ideal (i.e., ideal in Nil(R)) is finitely generated.

Example 2.2. (1) Every Noetherian ring is J,-Noetherian.

(2) Obviously, if J(R) = (0), then R is J.-Noetherian, since the only
ideal in J(R) is 0, which is finitely generated.

(3) A local ring (R, M) is J.-Noetherian if and only if it is Noetherian.
In particular, if R is a chained ring.

(4) The converse of (1) fails, i.e., there exist J,-Noetherian rings that
are not Noetherian. In fact, any non-Noetherian zero-dimensional
reduced ring (such as a von Neumann regular ring) is J,-Noetherian.

(5) A ring R is Noetherian if and only if R is J,-Noetherian and non-.J-
Noetherian [5, Proposition 1].

(6) Each J,-Noetherian ring is Nil,-Noetherian.

(7) The converse of (6) fails, i.e., there exist J,-Noetherian rings that
are not Noetherian. In fact, any non-Noetherian local domain is a
Nil,-Noetherian ring that is not J,-Noetherian.

(8) If J(R) = Nil(R), then R is J.-Noetherian if and only if it is Nil,-
Noetherian. In particular, if R is a zero-dimensional ring, then R is
J«-Noetherian if and only if it is N¢l,-Noetherian.

The first result of this paper is to provide the Eakin-Nagata-Formanek
Theorem for J,-Noetherian rings.

Theorem 2.3. Let R be a ring. Then the following statements are equiva-
lent:

(1) Every nonempty family of ideals in J(R) has a mazimal element;
(2) R is J.-Noetherian;
(8) Every ascending chain of ideals in J(R) is stationary.

Proof. (1) = (2) Let I be an ideal in J(R). Set € to be the set of all
finitely generated ideals that are included in I. For every a € I, the fact
that aR C I C J(R) ensures that aR € 2, and hence 2 is nonempty. By
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assumption, {2 has a maximal element L. On the other hand, L is finitely
generated. Write L = ;R + --- + 2, R. Now, our aim is to prove that
I=0L. Let @ € I and set Q = L+ aR. Therefore, @ C I and @Q is a finitely
generated ideal of R, so @ € ). Since L C @, by the maximality of L, we
have @Q C L. Therefore, o € L, and thus I = L is finitely generated.

(2) = (3) Let (Ip)nen be an ascending chain of ideals in J(R). If I =
Unen In, then I is an ideal of R in J(R), and by hypothesis, I is finitely
generated. This implies that I = Ray + --- + Ra, for some aq,...,a, € 1.
Hence, there exists kK € N such that I C I;. Therefore, I,, = I for any
n > k, and thus (I,)nen is stationary.

(3) = (1) Let I" be a nonempty set of ideals in J(R). Suppose that I'
has no maximal elements. If we take any I; € I', then I; is not a maximal
element. Thus, there exists I € I' such that Iy C I>. Since I is not a
maximal element, we can find I3 € I" such that Iy C I3. Hence, we obtain
an ascending chain Iy C I C --- C I, C --- of ideals in J(R). This chain is
not stationary. O

It is known in [13, Problem 1, page 52| that if a ring R satisfies the
ascending chain condition on finitely generated ideals, then R is Noetherian.
We have the following similar result for J,-Noetherian rings.

Proposition 2.4. Let R be a ring. If R satisfies the ascending chain con-
dition on finitely generated ideals in J(R), then R is a J.-Noetherian ring.

Proof. Assume that there is an ideal I in J(R) that is not finitely generated.
Let a; € I. Then (a1) C I. Let ag € I\(a1). Then (a;) C (a1,a2) C
I,... forms a strictly ascending chain of finitely generated ideals in J(R),
contradicting the ascending chain condition. ([

Proposition 2.5. Let R be a J.-Noetherian ring. If I is an ideal in J(R),
then R/I is J.-Noetherian.

Proof. Let K be an ideal in J(R/I). Then K = J/I for some R-ideal J
containing I. Let m be a maximal ideal of R. Since I C J(R) C m, we
conclude that m//I is a maximal ideal of R/I. Hence, K = J/I Cm/I, and
thus J € m for every m € Max(R). Therefore, J C J(R), meaning J is
finitely generated. Hence, K is a finitely generated R/I-ideal. U

Note that the condition “I is in J(R)” in Proposition 2.5 cannot be re-
moved.

Example 2.6. Let A = D[X;, X2,...] be the polynomial ring over a local
domain (D, m) with countably infinite variables. Then A is J,-Noetherian
since J(A) = 0. Now, consider the quotient ring R = A/ (X?|i>1). It
is casy to see that J(R) = m + (X1, Xs,...) is infinitely generated, where
X, denotes the representative of X; in R for each i. Hence, R is not J,-
Noetherian.
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Proposition 2.7. A finite direct product of rings R = Ry X --- X Ry, is
J«-Noetherian if and only if each R; is J.-Noetherian (i =1,...,n).

Proof. This follows from the fact that J(R) = J(Ry) x --- x J(Ry), and
J(R) is a Noetherian R-module if and only if each J (R;) is a Noetherian
R;-module (i =1,...,n). O

The well-known Hilbert Basis Theorem states that a ring R is Noetherian
if and only if R[X] is Noetherian (see [16, Theorem 4.3.15]).

Lemma 2.8. ([16, Exercise 1.47]) Let R be a ring. Then J(R[X]) =
Nil(R[X]) = Nil(R)[X].

Theorem 2.9. Let R be a ring. If R is a J.-Noetherian ring, then R[X] is
a Jy-Noetherian ring.

Proof. Assume that R is a J,-Noetherian ring. Then R is also Nil,-Noetherian,
and hence R[X] is a J,-Noetherian ring by combining Lemma 2.8 with [17,
Theorem 1.9]. O

The following example shows that the converse of Theorem 2.9 does not
hold.

Example 2.10. Let D be a local domain that is not Noetherian. Then
J(R[X]) = 0 according to Lemma 2.8, and thus R[X] is a J,-Noetherian
ring. However, R itself is not J,-Noetherian.

Remark 2.11. Let ¢ : R — S be a ring homomorphism making R a module
retract of S. If S is J,-Noetherian, then R is not necessarily J,-Noetherian,
as noted in the above example. This shows that the well-known result
“every retract of a Noetherian ring is Noetherian” does not generalize to
J«-Noetherian rings.

Surprisingly, unlike in the classical case, the localization of a J,-Noetherian
ring can be non-J,-Noetherian.

Example 2.12. Take a field k£ and the ring R = k[X1,...,X,,...]. Since
J(R) = 0, R is a J,-Noetherian ring. However, the localization of R at
the maximal ideal m = (X1, ..., X,,,...) is not (J-)Noetherian, as the chain
(X7) € (X1,X2) C -+- C (Xy,...,X,) C -+ forms a strictly ascending
chain of ideals in Ry,.

Proposition 2.13. Let R be Nil,-Noetherian and S a multiplicative subset
of R. Then Rg is also Nil,-Noetherian.

Proof. By replacing the descending chain with an ascending chain, the proof
is similar to that of [18, Proposition 2.5], thus we omit it. O

It is also well-known that a ring R is Noetherian if and only if R[[X]] is
Noetherian (see [16, Theorem 4.3.15]).

Lemma 2.14. (1) If I is an ideal of R, then I is a finitely generated
ideal of R if and only if I[[X]] is a finitely generated ideal of R[[X]].
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(2) If J is an ideal of R[[X]], then J is finitely generated if and only if
X J is finitely generated.

Proof. (1) Apply [14, Lemma 2] in the specific case S = {1}.
(2) This follows from the fact that X.J = J (since X is a regular element
of R[[X])). O

Theorem 2.15. Let R be a ring. Then R[[X]] is a J.-Noetherian ring if
and only if R is a J.-Noetherian ring.

Proof. For necessity, assume that R[[X]] is a J,-Noetherian ring. Let I be
an ideal of R. Since XI[[X]] C J(R) + XR[[X]] = J(R[[X]]), we conclude
that X I[[X]] is a finitely generated ideal of R[[X]]. Hence, I[[X]] is a finitely
generated ideal of R[[X]] according to Lemma 2.14 (2), and therefore, I is
a finitely generated ideal of R by Lemma 2.14 (1). For sufficiency, see [16,
Theorem 4.3.15]. O

By induction, we have the following result.

Corollary 2.16. Let R be a ring. Then R[[X1,...,X,]] is a J.-Noetherian
ring if and only if R is a Noetherian ring.

Example 2.17. Let R be a non-Noetherian reduced ring (i.e., Nil(R) = 0).
Then R[[X]] is a Nil,-Noetherian ring, but it is not J.-Noetherian.

Let A be a ring and let M be an A-module. Then, the set A x M,
consisting of all pairs (r,m) € A x M with componentwise addition and
multiplication defined by (r,m)(b, f) = (rb,rf + bm), is a unitary commu-
tative ring, called the trivial extension (or idealization) of A by M. Recall
from [3, Theorem 4.8] that the trivial ring extension R x M is Noetherian
if and only if R is Noetherian and M is finitely generated. In particular,
trivial ring extensions have been useful in solving many open problems and
conjectures in both commutative and non-commutative ring theory. The
basic properties of the trivial ring extension are summarized in [3, 12].

Lemma 2.18. ([3, Theorem 3.2]) Let R be a commutative ring and M an
R-module. Then the Jacobson radical of the trivial ring extension A x M is

J(Ax M) =J(A) x M.
Now we determine when the trivial ring extension Rx M is J,-Noetherian.

Theorem 2.19. Let R be a ring and M an R-module. Then the following
assertions are equivalent:

(1) R % M is a J.-Noetherian ring.

(2) R is a J.-Noetherian ring and M is a Noetherian R-module.

Proof. (1) = (2) Since R = R x M /0 x M according to [3, Theorem 3.1],
and 0x M C J(R)x M = J(Rx M) by Lemma 2.18, R is J.-Noetherian by
Proposition 2.5. Since 0 X N is an ideal in J(R x M) for every submodule
N of M, it follows that 0 x N is a finitely generated R x M-module. Hence,
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it is easy to check that N is also a finitely generated R-module. Thus, M is
a Noetherian R-module.

(2) = (1) Suppose R is a Ji.-Noetherian ring and M is a Noetherian
R-module. Note that we have the following exact sequence of (R x M)-
modules:

0=0xM-S5RxMIR—0.

Let J®:J; € Jy C -+ be an ascending chain of ideals in J(R x M). Then
there is an ascending chain of ideals in J(R):

m(J*): w(J1)Cw(f) C---.
Thus, there exists k € ZT such that 7 (J;) = 7 (J,,) for any n > k. Similarly,
J*NOxM: JiN(OxM)CJlNOxM)C---

is an ascending chain of sub-ideals of 0 x M. For every i > 1, there exists
a submodule N; of M such that J; N (0 x M) = 0 x N;. This implies
that Ny C No C --- is an ascending chain of submodules of M. Thus,
there exists k' € Z™ such that N, = N,, for any n > k', and therefore
JoNOx M = J,N0x M. Let | = max{k,k’'} and n > [. Consider the
following natural commutative diagram with exact rows:

0 —— J,N(0x M) Jy en 0
| | |
0 —— J,N(0x M) In w(Jp) —— 0

Thus, we have J,, = J; for any n > [. Therefore, Rx M is a J,-Noetherian
ring by Theorem 2.3. O

The following example illustrates two points: firstly, that the condition
“M is a Noetherian R-module” in Theorem 2.19 cannot be weakened to ” M
is a finitely generated R-module,” and secondly, that [17, Theorem 2.1] is
not generally true.

Example 2.20. Let R be a von Neumann regular ring which is not Noe-
therian. Then R is a J.-Noetherian ring (since J(R) = Nil(R) = 0), and
M := R is a finitely generated R-module. However, R X M is not a J,-
Noetherian ring, according to Theorem 2.19.

Now, we determine when the trivial ring extension Rix M is Nil,-Noetherian.

Theorem 2.21. Let R be a ring and M an R-module. Then the following
assertions are equivalent:

(1) R x M is a Nil.-Noetherian ring;
(2) R is a Nil.-Noetherian ring and M is a Noetherian R-module.

Proof. The proof is similar to that of Theorem 2.19, and thus we omit it. [
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An R-module M is called divisible if aM = M for every non-zero-divisor
a € R (see [16, Definition 1.6.10(2)]). It is easy to see that every quotient
module of a divisible module is divisible; every direct sum and every direct
product of divisible modules is also divisible. Additionally, the quotient field
K of a domain R is a divisible R-module.

Let I be an ideal of R, and let J be a nonempty subset of R. The
residual of I by J is defined as (I : J) = {z € R | zJ C I}. Furthermore,
for J = (a) C R, we prefer the notation (I : a) instead of (I : (a)).

Recall from [9] that a ring R is called J-coherent provided that any finitely
generated ideal in J(R) is finitely presented. The next example proves that
J-coherent rings are not J,-Noetherian in general.

Example 2.22. The trivial ring extension R = Z x Q/Z is a coherent ring
that is not J.-Noetherian.

Proof. According to Theorem 2.19, R is not J.-Noetherian since Q/Z is not
a Noetherian Z-module (in fact, it is not finitely generated). However, we
will show that R is coherent. Indeed, let 0 # x € R. Then two cases are
possible:

Case 1: If x € J(R), then there exist nonzero a,b € Z with ged(a,b) =1
such that # = (0, § + Z) by Lemma 2.18. Hence, it is easy to check that
(0:z) =bZ x Q/Z is a principal ideal of R according to [4, Lemma 2.2].

Case 2: If x ¢ J(R), then x = (d,e) for some 0 # d € Z and e € Q/Z.
Thus,

(05 2) = 0x <%+Z) :(O,é)R

is a principal ideal of R. Thus, in both cases, we conclude that (0 : z) is a
principal ideal of R (and therefore finitely generated).

On the other hand, let J; and Js be two finitely generated ideals of R.
We claim that J; N Jy is also finitely generated. Three cases are possible:
Case 1: If both ideals J; and Jy are not in J(R), since J(R) is a divided
ideal of R, we conclude that there exist two ideals Iy = n1Z and Iy = nyZ
such that J; = I; x Q/Z for i = 1,2 (see [3, Corollary 3.4] and recall that
Q/Z is a divisible Z-module). Hence, J;NJy = (I1N12) x Q/Z is a principal
ideal of R by [4, Lemma 2.2].

Case 2: If one ideal is in J(R) but the other is not, without loss of
generality, assume that J; C J(R) and J3 is not in J(R). Since Q/Z is a
divisible Z-module, we conclude that every ideal of R is comparable with
J(R) according to [3, Corollary 3.4]. Thus, J(R) C Ja, and therefore J; N
Jo = Ji is finitely generated.

Case 3: If both ideals are in J(R), then there exist two submodules F;
and Fy of Q/Z such that J; = 0 x Fy and Jy = 0 x Fy. Since J; and Jo are
finitely generated ideals of R, we can easily see that F; and F5 are finitely
generated submodules of Q/Z. Thus, F; + F is finitely generated, and
therefore F} + Fj is a finitely presented Z-module (as a finitely generated
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module over a Noetherian ring). Hence, F} N F; is a finitely generated Z-
module according to [10, Corollary 2.1.3]. Thus, (0 x Fy) N (0 x Fy) =
0 x (Fy N Fy) is a finitely generated ideal of R. Hence, our claim is true, and
thus R is coherent according to [10, Theorem 2.13]. O

By making a slight alteration to the previous example, we can construct
a J-coherent ring that is neither coherent nor J,-Noetherian.

Example 2.23. Let E := @, £, with E,, :== Q/Z, and set R =Z x E.
Then, by Theorem 2.19, R is not .J,-Noetherian since E is not a Noetherian
Z-module. On the other hand, R is not coherent according to [1, Example
2.6]. Now we claim that R is J-coherent. Let € J(R). Then x = (0, ¢e) for
some e € E. As for every e € E, there exists 0 # d € Z such that de = 0, we
have that (0 :g ) = Ann(e) x E is a principal ideal of R (and thus finitely
generated) by [4, Lemma 2.2]. On the other hand, using the same approach
as in the third case of the previous example, we find that the intersection
of any two finitely generated ideals in J(R) is finitely generated. Thus, R is
J-coherent according to [9, Theorem 2.13].

Remarkably, in contrast to the classical case, J.-Noetherian rings can also
be non-J-coherent.

Example 2.24. Set A = Z[X1, Xs,...], the polynomial ring over Z with
countably infinite variables. Then the natural projection 7 : A — Z defines
an A-module structure on Z. The trivial ring extension R := A X Z is
Jy«-Noetherian but not J-coherent.

Proof. Since J(R) = 0 x Z, every ideal of R in J(R) has the form 0 x
F, where I is an A-submodule of Z. As the restriction of 7 on Z is the
identity, we conclude that the submodules of Z as an A-module are exactly
the submodules of Z as a Z-module (i.e., ideals of Z). Hence, 0 X F' =
0 x nZ = (0,n)R is a principal ideal of R. Thus, R is a J,-Noetherian
ring. However, the fact that » = (0,1) € J(R) and (0: 1) = (X1, Xo,...) X
Z is infinitely generated implies that R is not J-coherent according to [9,
Theorem 2.13]. O

Theorem 2.25. Let R be a ring such that J(R) is a reqular ideal. Then:

(1) R is a J.-Noetherian ring if and only if R is a Noetherian ring.
(2) R is a J-coherent ring if and only if R is a coherent ring.

Proof. (1) If R is a Noetherian ring, then it is naturally J.-Noetherian.
Conversely, assume that R is a J,-Noetherian ring and let I be a proper
ideal of R. We claim that I is finitely generated. Indeed, let a be a regular
element in J(R). Then al C aR C J(R), and so al is a finitely generated
ideal of R (since al C J(R) and R is a J,-Noetherian ring). It follows that
I is a finitely generated ideal of R since al = I (as a is a regular element of
R). Therefore, R is a Noetherian ring.

(2) The proof is similar to (1), and so we omit it. O
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Remark 2.26. Let R be a J,-Noetherian ring. Then R is a J-coherent
ring if J(R) is a regular ideal according to Theorem 2.25. Hence, if R is a
J-Noetherian ring that is not J-coherent, then J(R) C Z(R). Furthermore,
if R is J,-Noetherian with Z(R) = J(R), then we can easily see that R is J-
coherent. In summary, a J,-Noetherian ring R is not J-coherent if and only
if there exists © € J(R) C Z(R) such that (0 : x) is an infinitely generated
non-J-ideal.

3. MODULE-THEORETIC CHARACTERIZATIONS OF J,-NOETHERIAN AND
J-COHERENT RINGS

Let R be a ring. Recall from [9] that an R-module M is called J-injective
if Ext!(R/I, M) = 0 for every finitely generated ideal I in J(R), or equiv-
alently, if for any finitely generated ideal I in J(R), every homomorphism
a: I = M extends to a homomorphism g : R — M. An R-module N is
said to be J-flat if Tor; (N, R/I) = 0 for every finitely generated ideal I in
J(R).

In what follows, JZ (resp. JJF) stands for the class of all J-injective
R-modules (resp. J-flat R-modules). We can easily observe that JZ (resp.
JF) is closed under extensions, direct products (resp. direct limits), direct
sums, and direct summands. Moreover, the classes JZ and JF are closed
under pure submodules (see [9, Lemma 2.4]).

We begin this section with the following concepts.

Definition 3.1. An R-module M is said to be J.-injective provided that
Exth(R/I, M) = 0 for any ideal I in J(R), or equivalently, if for any ideal
I in J(R), every homomorphism « : I — M extends to a homomorphism
6:R— M.

Trivially, injective modules are J,-injective, and the class of J.-injective
modules is closed under direct products.

Theorem 3.2. (Cartan-Eilenberg-Bass Theorem for J.-Noetherian rings)
Let R be a ring. Then the following assertions are equivalent:
(1) R is J.-Noetherian;
(2) Each direct union of J.-injective (resp., injective) modules is J,-
injective;
(3) Each direct sum of J.-injective (resp., injective) modules is J-injective;
(4) For every J.-injective (resp., injective) R-module E, @ E is J,-
mjective;
Proof. (1) = (2) Let {Ei, fij};—;jea be a direct system of Ji-injective
modules, where each f;; is the embedding map. Let thz be its direct
limit. Let I be an ideal in J(R). Then it is finitely generated. Since R/I is
finitely presented, we have

Extp, (R/I,lig E;) = lim Exty, (R/1, E;) = 0
by Lenzing’s theorem. Thus, th, is Jy-injective.



On j«—-Noetherian rings

(2) = (3) = (4) These implications are straightforward.

(3) = (1) Suppose, for the sake of contradiction, that R is not J,-
Noetherian. Hence, there exists a non-finitely generated ideal I in J(R).
So there is an element ag € I such that agR # I. Take 0 # ay € I \ agR,
then the ideal a1 R + agR # I. Take ag € I\ (a1R + agR), then the ideal
a1R + asR + agR # I. Repeating these steps, we get a strictly increasing
chain of ideals in J(R):

aoR+a1RCayR+a1R+aRC - CaR+a R+ +a,RC ---

Set A; = Zz':o a;R. Using [2, Corollary 10.5], we conclude that for any A;,
there exists a maximal sub-ideal C; of A; satisfying

CiCcACCCAC---CC,CA,C -

Set Q = {A;/C;}. Denote by E(F) the injective envelope of F' for each
F € Q. Then @pcq E(F) is Ji-injective by (2). Set A = J;2; A;. Then A
is an ideal in J(R). Set 7; : A; — A;/C; as the natural epimorphism and p; :
A;/C; — E(A;/C;) as the inclusion map. Then there are homomorphisms
fi + A — E(A;/C;) which are extensions of p; o m;. Let a € A, and let
[+ A= @peq E(F) satisty f(a) = (fi(a));2,. Since Ppeq E(F) is J-
injective, f can be extended to a homomorphism g : R — @pcq E(F)
with g(r) = g(1)r. Set g(1) = (c1,¢2,...,¢n,0,...). Take a € A such that
a € Apy1 \ Cny1- Then ppi17mr1(a) # 0, and so fry1(a) # 0. However,

fa) =g(a) = g(1)a = (c1a,c2a,...,cna,0,...)
which is a contradiction. Thus, R is J,-Noetherian.

(4) = (3) Let {E;}icq be a family of J,-injective modules. Then [[,.q E;
is Ji-injective. Hence, € (HzeQ EZ) is Jy-injective by assumption. Since
@D;cq Ei is a direct summand of @ ([[,cq, Ei), we conclude that @, E; is
Jy-injective. ([

Corollary 3.3. Let R be a ring. Then R is J.-Noetherian if and only if
any J-injective module is Jy-injective.

Proof. Assume that R is a J,-Noetherian ring. Let I be an ideal in J(R)
and M a J-injective module. Then [ is finitely generated, and thus R/I is
finitely presented. It follows that Extk(R/I, M) = 0. Consequently, M is
Je-injective.

Conversely, assume that any J-injective module is J,-injective. Since the

class of J-injective modules is closed under direct sums, R is a J,-Noetherian
ring by Theorem 3.2. O

Remark 3.4. We must remark that a ring R is J,-Noetherian if and only
if any direct union of (J,-)injective R-modules is J.-injective, as stated in
Theorem 3.2. Thus, if any direct limit of injective R-modules is J.-injective,
then R is a J,-Noetherian ring. However, the converse does not hold in
general. Indeed, let R be a J,-Noetherian ring that is not J-coherent (see
Example 2.24). Then the class of J.-injective R-modules is equal to that of
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J-injective modules. However, by [9, Theorem 2.13], there exists a direct
system of (J,-)injective R-modules whose direct limit is not J.-injective.

In 1993, Chen and Ding in [8] showed that a ring R is coherent if and only
if Homp(M, E) is flat for any absolutely pure R-module M and injective R-
module E, and if and only if Hompg (M, E) is flat for any injective R-modules
M and E. We generalize this result to J-coherent rings.

Theorem 3.5. The following assertions are equivalent for a ring R.

(1) R is a J-coherent ring;

(2) Hompg(M, E) is J-flat for every J-injective module M and every
injective module E;

(3) Hompr(Hompg(M, Ey), E2) is J-flat for every J-flat module M and
every injective module E1, Es;

(4) If E1 and Es are injective cogenerators, then Homp(Hompg(M, E1), E9)
1s J-flat for every J-flat module M .

We need the following lemma of independent interest before proving The-
orem 3.5.

Lemma 3.6. Let R be a ring and M be an R-module. Then the following
assertions are equivalent:

(1) M is J-flat;

(2) Hompg(M, E) is J-injective for any injective R-module E;

(8) Hompg(M, E) is a J-injective module for any injective cogenerator

R-module E.

Proof. (1) = (2) Let I be a finitely generated ideal in J(R) and E an in-
jective R-module. Since M is J-flat, it follows from [16, Theorem 3.4.11] that
Exth(R/I, Homp(M, E)) = Homp(Tor®(R/I, M), E) = 0. Thus, Homg (M, E)
is J-injective.

(2) = (3) This is straightforward.

(3) = (1) Let I be a finitely generated ideal in J(R) and F an injective
cogenerator R-module. Since Hompg(M, E) is J-injective, it follows that
Hompg(Torf'(R/I, M), E) = Exth(R/I,Homp(M, E)) = 0. Since E is an
injective cogenerator R-module, we can deduce that Torf(R/I, M) = 0.
Therefore, M is J-flat. U

Proof of Theorem 3.5. (1) = (2) Let I be a finitely generated ideal in
J(R). Consider the following commutative diagram with exact rows:

0 — Torf(Homg (M, E), R/I) ——— Homgr (M, E) ® | ———— Hompg (M, E)
l/wR/I lwf le
0 —— Hom(Extk(R/I, M), E) —— Hom(Hom(I, M), E) — Hom(Hom(R, M), E)

Since I and R are finitely presented and F is injective, ¢; and g are iso-
morphisms by [16, Theorem 2.6.13(2)]. Thus, 1/ is an isomorphism by the
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Five Lemma. On the other hand, since M is J-injective, ExthL(R/I, M) = 0,
hence Torl*(Homg(M, E), R/I) = 0. Therefore, Homp(M, E) is J-flat.

(2) = (3) This follows from Lemma 3.6.

(3) = (4) This is straightforward.

(4) = (1) Let {M;},cr be a family of J-flat modules and Ey and E3 be
injective cogenerators. Then @, . M; is J-flat. Thus,

Homp (HomR (@ Mi,E1> ,E2> ~ Homp (H HomR(Mi,El),E2>

el el
is J-flat by hypothesis. Since @, . Homg(M;, E1) is a pure submodule of
[Licr Homg(M;, Ey) by [7, Lemma 1(1)], the natural epimorphism:

HOII]R (H HOIIlR(Mi, El), EQ) — HOIIlR (@ HOIIIR(MZ‘, El), E2>
el el
splits by [11, Lemma 2.19]. Hence,

[ [ Homg (Hompg(M;, Ev), Ez) = Homp (@ Homp(M;, Ey), E2>
il il

is J-flat. Note from [11, Corollary 2.21] that [[;. M; is a pure submodule
of [[;er Homg (Hompg(M;, Ev), E2). Thus, [[;cp M; is J-flat by [9, Lemma
2.4]. Hence, R is J-coherent by [9, Theorem 2.12]. O

By combining [19, Lemma 3.4], [9, Theorem 2.13], and [9, Lemma 2.4],
we can deduce the following results:

Proposition 3.7. Let R be a ring. The following statements are equivalent:

(1) R is J-coherent;

(2) The class of J-injective R-modules is closed under pure quotients;
(3) The class of J-injective R-modules is closed under direct limits;
(4) The class of J-injective R-modules is precovering;

(5) The class of J-injective R-modules is covering.
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